
NEEDS

Nordic Enhanced Educational Directory Service

<needs@uninett.no>

http://www.katalog.uninett.no/needs/

July 25, 2002

Contents

1 About this document 1

2 Overview of NEEDS 1

2.1 Connecting LDAP servers . 1

2.2 Software used . 2

2.3 The LDAP directories . 3

3 LDAP data model 3

4 Structuring your directory 5

4.1 Considerations . 5

4.2 Guidelines . 5

4.2.1 Naming your root . 6

4.2.2 Namespace hierarchy . 6

4.2.3 Naming your objects . 6

4.2.4 Attribute values in your entries 7

5 Tagged Index Objects 8

5.1 Format of TIOs . 8

5.2 Distribution of TIOs . 9

6 Running the NEEDS service 9

6.1 The overall picture . 10

6.2 Generating TIOs . 10

6.3 Running the index server . 11

6.4 Simple search . 11

6.5 More advanced search . 12

6.6 Different search interfaces . 12

7 NEEDS and proxies 12

8 Privacy issues 15

9 Future use 15

References 17

A LDIF to TIO example 18

A.1 UNINETT.ldif . 18

A.2 UNINETT.tio . 19

B TIOnet requirements 20

C tags manpage 22

D lims manpages 25

D.1 lims . 25

D.2 lims.conf . 27

E Draft agreement 32

1 About this document

This document is a summary of the main aspects of the “Nordic Enhanced Ed-
ucational Directory Service” (NEEDS) project. NEEDS has been funded by
Nordunet2, which is a research programme financed by the Nordic Council of
Ministers and by the Nordic Governments 1.

The project started in April 2001, and was due to finish in April 2002. However,
it was delayed by three months, and final end of the project was set to June 2002.

Short texts have been written throughout the project period. This document
tries to collect the main parts of the technical aspects, and wrap them up in one
single document.

2 Overview of NEEDS

Two main goals of NEEDS have been [1]:

• To develop and deploy a common Nordic index based directory infrastruc-
ture to facilitate searching for persons in the Nordic academic community

• Provide information and documentation (guidelines) to interested persons
in the Nordic academic communities

Main focus has been on how to connect existing directories.

2.1 Connecting LDAP servers

Connecting LDAP servers can be done (the “old way”) by including referrals
to all of them in one central LDAP server. When a client does a search in the
central server it gets back all the referrals and it has to repeat the search in all
those distributed servers. Figure 1 shows the “NEEDS way” of doing this. When
a client does a search it usually gets back a subset of all the referrals, based on
what kind of hits the search in the index resulted in.

Referrals to LDAP servers that are known to give no hits are not returned by the
central index server. In most cases the number of servers searched are significantly
reduced, and thus the time spent searching would be reduced. Still you have the
problem of a “chain not stronger than the weakest link”: The search is not done
until the slowest response is received, but this solution scales better than the “old
way” of connecting the servers.

1http://www.nordunet2.org/

1

Figure 1: Connecting LDAP servers using a central index server.

2.2 Software used

NEEDS is using software developed by Roland Hedberg (Catalogix 2). He has
developed a index server called lims, and to produce data used in the index
server tags (to produce TIO, which is described in section 5, from LDIF) and
gather (to harvest/crawl information from operational LDAP servers) have been
developed. Roland’s comments:

lims with its companions tags and gather is a combination of a LDAP server
and a search engine. By the use of gather and tags you can collect information
from LDAP servers and pass them on to the “search engine” which then to any
LDAP client appears as a normal LDAP server except for the fact that it never
returns information about objects it only returns referrals.

The whole concept is based on the work done by the IETF FIND working group
on the Common Indexing Protocol. There are two basic concepts in this work;
one is the belief that it would be possible to define a protocol by which one could
send any type of index information between index producers and servers and the
other is the concept of query routing.

2http://www.catalogix.se/

2

Query routing simple means that a client through the use of a sequence of
servers/routers can be guided to a information server that has the sought for
information.

What are the benefits:

• One well-known access point to publish.

• No need for harmonizing namespaces.

• Given the right index, a query should normally only reach a very limited
number of information servers.

• The decisions on access to the information are kept at the source of the
information.

Drawbacks

• You have to agree on what should be in the index, which attributes, how
to tokenize and so on. The project that has used lims so far has used the
Tagged index Object as defined in RFC 2654 [2].

• LDAP clients has to be able to handle potentially large number of refer-
ences.

• The use of the index server adds a finit amount of time to every query.

2.3 The LDAP directories

Before we describe the NEEDS solution in a little more detail, we would like to
say something about “how to structure your directory”. In the end the users
of the NEEDS service will usually end up doing a search in one (or more) of
the LDAP servers participating in the total distributed directory service, and
how this information should be structured is an important issue. These servers
and this information is owned by the end institutions, which in our case are
usually universities or similar academic institutions. The next two sections will
go through this topic.

3 LDAP data model

Figure 2 shows a sketch of a possible Directory Information Tree (DIT). Using
this figure we can define some important keywords to be used when discussing
how to structure your information stored in a directory. These definitions are
from RFC 2251 [3]:

3

Figure 2: Sketch of a Directory Information Tree (DIT)

Entry includes attributes and attribute values. The directory information tree
is made up of these entries.

RDN or Relative Distinguished Name, is formed by one or more attribute values
from an entry. This name must be unique among all its siblings. In the
figure “o=UNINETT Sekretariat” is a possible RDN.

DN or Distinguished Name, is “the concatenation of the relative distinguished
names of the sequence of entries from a particular entry to an immediate
subordinate of the root of the tree”. In the figure “o=UNINETT Sekre-
tariat, dc=uninett, dc=no” is one such DN.

Naming Context is defined to be “the largest collection of entries, starting
at an entry that is mastered by a particular server, and including all its
subordinates and their subordinates, down to the entries which are mastered
by different servers”.

DSE (DSA-specific Entry) is defined to be the root of the tree, and is not part
of any naming context.

DSA is an X.500 term for the directory server.

4

4 Structuring your directory

There are many ways of structuring your directory information tree and the
information stored. “Understanding and deploying LDAP directory services” [4]
gives detailed information about this and other issues.

4.1 Considerations

Why is it important to have a good structure of your DIT? Structuring your
namespace is important to:

• be ready for future enhancements, such as

– increased number of entries, but still keep good organization of the
data

– supporting interconnection with global infrastructure of directories

– supporting automatic systems/applications by offering a structured
way of accessing your data

• give users good search interfaces

– when searching locally within your own organization

– when searching global interconnected directories

• ease of data maintenance, which could be done by dividing your DIT into
different subtrees, and distribute the administration of these trees

• more flexible implementation and maintenance of access control

• presentation of your data to a user browsing the directory could be improved
by organizing your data in a well structured hierarchy

There could be more, but these are perhaps the main considerations you have to
make.

4.2 Guidelines

It’s hard to give absolute solutions to the question “how to structure your DIT”.
However it is possible to give some guidelines that could be used when establishing
your directory service. These guidelines are mainly collected from “Understand-
ing and deploying LDAP directory services” [4] and “A Recipe for Configuring
and Operating LDAP Directories” [5].

5

4.2.1 Naming your root

First of all it is important to choose a root/suffix of your directory. A common
mistake is to think only of local users when doing this, instead of thinking of
your directory as part of a larger global, interconnected set of directories. It
is common today to suggest that directory administrators should use “domain
component naming” instead of the original “X.521 naming”. Main reason for
this is the lack of administration of the “X.521 name space”. Domain names are
however administrated, and are globally unique. Some software products also
requires this kind of naming.

An example:
The domain name of the organization “UNINETT” is uninett.no. Traditional
“X.521 naming” would name the root as o=uninett, c=no, but instead we sug-
gest using the “domain components”, i.e. naming your root dc=uninett, dc=no.

Using “dc naming” also simplifies the process of finding information using SRV
records [6]. SRV records have no information regarding the name of your directory
root. This information is needed when searching for persons, and “dc naming”
makes it easier.

4.2.2 Namespace hierarchy

Once your root is decided, you should go on designing your namespace hierarchy.
It’s often said that you should make your namespace as flat as possible. The
flatter the “less likely names are to change” [4] (in this context “names” are
DNs), and it’s also easier to move an object within the organization (you just
have to change one component of the name of the object to do so).

Other considerations should however be made when designing your namespace.
As mentioned in section 4.1 ease of data maintenance could be done by dividing
your DIT into different subtrees, thus making a deeper namespace hierarchy. If on
the other hand your organization has a central point of administration, different
users get their username/uid from them, and such administration assures that
these identifications are unique. If you can trust your users to have unique IDs
it is possible to have a flat namespace.

Better access control could also be implemented if you create a more hierarchical
tree. If you organize your tree in a hierarchy you don’t have to give each object
an explicit access control.

4.2.3 Naming your objects

DN and RDN were defined earlier in this document. Any object in the tree has
an unique DN, and any RDN must be unique among all its siblings. (This also

6

explains why you can have a flatter namespace if your users have unique IDs.)
To achieve unique naming of your objects you could consider

1. Using multivalued RDNs

2. Creating a new subtree, thus expanding the DN of the objects

3. Assigning unique IDs to your objects and use this as your RDN

Using multivalued RDNs “tend to give long, complicated names that change
frequently” [4] (also true when creating a new subtree), and this solution is also
discouraged because some directory implementations don’t fully support it.

The last solution listed (assigning unique IDs) is a better solution, but could be
hard to accomplish. If often requires a central administration of your person data,
which is not always true at for example a university or college. Using a unique
ID as RDN could give a flatter namespace, but if this solution is not working
you should consider adding another level to your namespace hierarchy instead of
using multivalued RDNs.

Some examples of various RDNs which could be used, with some keywords re-
garding these solutions:

userid : Could be more readable for users searching your directory, might not be
unique across the whole namespace, often not everyone at the organization
has such an ID.

serial number : could be student number, usually unique across the whole
namespace, not very human readable, could be privacy issues if you’re using
existing serial numbers.

common name : human readable and easy to remember, not always unique
across the whole namespace.

name + serial number : results in long complicated RDNs, some software
products don’t support multivalued RDNs, could change more often than
other solutions.

4.2.4 Attribute values in your entries

Your directory entries should include attributes from standardized schemas. In-
stead of creating your own schema from scratch you should inherit attributes
from well defined standard schemas, and just add necessary new attributes in
your local schema.

7

To improve search capabilities your objects should include information that could
be used when searching for a user in a global directory. If for example a person
is located at “faculty AA” at “university A”, this information should be included
in the entry. This could be done by including attribute values for the attribute
types “o” and “ou” in your person entries. This solution also improves the search
capabilities for users searching in your local directory, even if you have a flat
namespace.

If you implement a flat namespace you could consider another tree where you
store your information about the organization. This solution facilitates good
browsing capabilities for end users looking for information about your organiza-
tion hierarchy. In this way you could keep the information about your users in a
flat namespace, but organize the organizational information in another structured
hierarchy. DNs of the objects in this tree tend to keep more unchanged than the
names of person objects, and should be more suitable to store in a hierarchy.

5 Tagged Index Objects

The specification of Tagged Index Objects (TIOs) can be found in RFC 2654 [2].
From the abstract of this RFC:

“This document defines a mechanism by which information servers can exchange
indices of information from their databases by making use of the Common Index-
ing Protocol (CIP). This document defines the structure of the index information
being exchanged, as well as the appropriate meanings for the headers that are
defined in the Common Indexing Protocol.”

5.1 Format of TIOs

The format used when exporting data from LDAP servers is called LDAP Data
Interchange Format (LDIF, RFC 2849 [7]), but from this format we generate
TIOs which are then used in the central index server. When going from LDIF to
TIO information is lost, but we are left with enough information to know where
to search for the original information.

The different attribute values in the LDIF file are tokenized according to a “to-
kenization scheme”, as listed in Table 1. In the NEEDS project we have decided
to tokenize at least these attributes:

• DNS: “cn”, “o”, “ou”, “givenName” and “objectClass”

• FULL: “sn”

8

Token Type Tokenization Characters

FULL none
TOKEN white space, “@”
RFC822 white space, “.”, “@”
UUCP white space, “!”
DNS any character note a number, letter, or “-”

Table 1: Tokenization schemes used in TIOs.

As a result, for example “cn=Anders Lund” is split into “Anders” and “Lund”.

In Appendix A you can see an example of what the conversion from LDIF to
TIO looks like. Each TIO has a unique Data Set Identifier (DSI) which normally
is a Object Identifier (OID). In our example we have used a OID assigned by
UNINETT for the TIO of the UNINETT organization (1.3.6.1.4.1.2428.50.1).

5.2 Distribution of TIOs

In principle TIOs should be produced where the LDAP servers are run and main-
tained, and then collected using some kind of distribution mechanism. This is an
issue that we have discussed in the NEEDS project, but a working solution is not
in place. Instead ad hoc solutions are used to harvest TIOs (for example FTP
or HTTP could be used to fetch TIOs, or the operators of central index servers
could fetch LDIF files and generate TIOs themselves).

In Appendix B the requirements of how TIOs should be distributed are included.
Work on an implementation of a system called “TIOnet” was started during the
project period, but due to lack of time available this work has not concluded.
To fulfill the requirements of the privacy laws (see also section 8 later in this
document), and to establish contracts with the producers of TIOs, some kind of
distribution mechanism needs to be set up. This is an unresolved problem in the
NEEDS project.

6 Running the NEEDS service

In the previous sections we have shortly described the different “building blocks”
of the NEEDS service. Using these elements we set up a central index server to
serve the end users.

9

6.1 The overall picture

The basic NEEDS service consists of two steps of operation:

1. Producing and collecting Tagged Index Objects

2. Loading TIOs into central index server

When operational a user might:

1. Send a LDAP query to the central index server

2. Receive some kind of LDAP referral back if he/she gets a hit

3. Issue a new LDAP query, using the referral received from the central index
server

4. Receive some kind of search result from the final LDAP server

as shown in Figure 1.

6.2 Generating TIOs

Using tags we can create TIOs from LDIF files. In Appendix C the manual pages
of tags are included. What attributes to index has already been mentioned in
section 5, and the format of the configfile of tags is specified in Appendix D.2.

To tokenize correctly the “attribute-section” of the configurefile should include
the information shown in Table 2.

cn DNS DirectoryString 2.5.4.3 32768
sn FULL DirectoryString 2.5.4.4 32768
ou DNS DirectoryString 2.5.4.11 32768
o DNS DirectoryString 2.5.4.20 32768
givenName DNS DirectoryString 2.5.4.42 32768
objectClass FULL OID 2.5.4.0 0

Table 2: Tokenization schemes used in NEEDS.

After a configurationfile is written we can index the information given in the
LDIF file. To produce the TIO in Appendix A we would run:

tags -D 1.3.6.1.4.1.2428.50.1 \

-R ldap://ldap.uninett.no/o=UNINETT,dc=uninett,dc=no \

-c lims.conf < UNINETT.ldif > UNINETT.tio

10

6.3 Running the index server

The lims program can load the different TIOs, which have been produced by
tags, and then users can search in this information using LDAP queries. Ap-
pendix D.1 and D.2 include the manual pages of the lims program and its cor-
responding configurationfile (the same as tags uses).

Usual way of starting lims would be by running:

lims -c lims.conf *.tio

if you store your TIOs in files with suffix tio. What port your index server will
listen to is specified in the configurationfile. Default portnumber for LDAP is
389, but one could of course use something else.

6.4 Simple search

Now that we have a running index server, with an LDAP interface, we can is-
sue searches using any LDAPv3 compliant client. Using the command line tool
ldapsearch from the OpenLDAP 3 software package we can demonstrate this by
running for example:

ldapsearch -h ldap.uninett.no -p 3891 -b "dc=no" "cn=Anders*"

The result is a referral which is returned from the index server:

ref: ldap://ldap.uninett.no:389/o=UNINETT,dc=uninett,dc=no

Using option -C we can tell ldapsearch to chase the referral and retrieve the
information from the LDAP server:

ldapsearch -C -h ldap.uninett.no -p 3891 \

-b "dc=no" "cn=Anders*" cn mail o ou

(returning only the attributes cn, mail, o and ou), which gives us:

dn: cn=Anders Lund, o=UNINETT, dc=uninett, dc=no

cn: Anders Lund

cn: Anders

o: UNINETT

ou: UNINETT Sekretariat

mail: Anders.Lund@uninett.no

The index server is only returning the referral.

3http://www.openldap.org/

11

6.5 More advanced search

Using more advanced LDAP search filters we can do more fine-grained searches,
but this depends upon what kind of attributes we have indexed.

We can use the UNINETT organization as an example. This organization consists
of two organizational units:

• UNINETT Sekretariat

• UNINETT FAS

As already written, we have indexed both attributes cn and ou in the NEEDS
service, and this could be used when searching for people within the UNINETT
organization. If we issue the search:

ldapsearch -C -h ldap.uninett.no -p 3891 \

-b "dc=no" "cn=A*" cn mail o ou

we get several hits. Only two of these work in UNINETT Sekretariat, and these
two entries can be found using a more advanced search filter:

ldapsearch -C -h ldap.uninett.no -p 3891 -b "dc=no" \

"(&(cn=A*)(ou=UNINETT Sekretariat))" cn mail o ou

6.6 Different search interfaces

Several different search interfaces can be used to search for information in the
index server, as long as the client uses LDAP. A convenient interface for ordinary
users is a “web interface”. NEEDS offer a web interface, as shown in Figure 3,
which can be downloaded from the main homepage (open source code written in
PHP 4). Other interfaces can be:

• E-mail clients with integrated LDAP support.

• WAP enabled devices

7 NEEDS and proxies

The main idea in NEEDS is that a user should be able to search for information
about a person, without knowing which organization the person is associated

4http://www.php.net/

12

Figure 3: Searching the index server using a web interface.

with. If say only the name of the person is known, there is no way to know
which LDAP servers might contain the information. NEEDS uses indexes built
from data in all LDAP servers participating in NEEDS, to know which servers
are likely to contain the information. To search using the NEEDS system one
performs an LDAP search in one of the NEEDS indexing servers, and the server
returns LDAP referrals to all servers that are likely to give hits. Referrals are not
supported in LDAPv2, thus the NEEDS system requires an LDAPv3 client. An
LDAPv3 client would typically chase all the referrals without involving the user,
the user only gets to see the final search results. The servers that the NEEDS
server points to, may also give referrals, and the client would also chase those.
An LDAPv3 client could alternatively present the referrals to the user, and make
the user decide whether they, and possibly which, should be chased.

NEEDS also offers a web interface that can perform searches. This is useful for
users that prefer to use the web, or do not have access to an LDAPv3 client.
When using the web interface, the web server is acting as an LDAPv3 client, so
LDAPv3 is still used.

There are a number of people still using LDAPv2 clients. The LDAPv2 client
cannot make use of NEEDS directly. It could however be possible to access
NEEDS servers through an LDAP proxy that uses LDAPv2 and LDAPv3 to
communicate with client and server respectively. It would also need to chase
referrals. The LDAPv2 client would only communicate with the proxy. To the

13

client the proxy looks like a normal LDAPv2 server which contains all the data
that exists in all the LDAP servers that take part in NEEDS. Another issue
is character sets. LDAPv2 clients expect a specific character set, and the proxy
would have to convert the data received from the LDAPv3 servers, which is UTF-
8, to the character set expected by the client. The client might expect UTF-8,
but clients would often expect ISO 8859-1, T.61 or something else. There is no
standard way for the client to specify which character set it wants, or for the server
to tell what character set is used. An easy solution would be to have separate
proxies for each character set, and configure clients to use a proxy supporting the
preferred character set.

The biggest problems with such a proxy are perhaps performance and scalability.
One search from a single client might last a relatively long time, tens of seconds is
common. One would typically chase all referrals in parallel, so the time depends
on the slowest LDAP server. In reality this can be more complex since referred
servers can also return referrals. During the search there will be an open TCP
session to the client. There will also be a TCP session to the NEEDS server
part of the time, this might be shared for multiple clients. For each referral
returned by the NEEDS server there will be opened a TCP session, these will
all be opened at the same time, but each can be closed as soon as the respective
search is finished, so if there is only a few slow servers, most of the sessions will
be closed quickly. The behavior here is much the same as for an LDAPv3 client
chasing referrals, but there might be a large number of LDAPv2 clients using the
proxy at the same time, and then the number of TCP sessions might become
a problem. Memory and CPU usage on the proxy may not be that much of a
problem on a modern computer, but the search would in most cases, depending
a bit on the clients performance and network connectivity, take longer time than
if the client chased the referrals itself. If character set conversion is done, that
will of course also affect the CPU usage. The biggest problem with character set
conversion is perhaps that some schema awareness is necessary to know which
data to convert and which to not.

Many LDAPv3 implementations are now available and the LDAPv2 IETF stan-
dards will probably change status to historic soon. We expect that most LDAPv2
users will move to LDAPv3 in the near future, although some are tied to legacy
applications that only support LDAPv2. A proxy would be useful to those who
for some reason use LDAPv2 clients, the alternative is to use a separate LDAPv3
client or a web interface when the NEEDS service is needed.

Today it is not worth the effort to develop such a proxy just for NEEDS. But it
might be of interest to test such proxies if any exists. Before this is considered
one should fully deploy the NEEDS service, and through those experiences be
sure that it works well for LDAPv3, and that the service is of sufficient interest
to the LDAPv2 users. By then it is likely that very few LDAPv2 users remain.

14

8 Privacy issues

Exchanging TIOs and running a central index server leeds to a series of questions
regarding privacy issues that needs to be resolved. Within the NEEDS project
a short report has been written by Walter M. Tveter [8], in which the different
aspects of this issue are discussed. From the introduction:

“This paper examines the Directive 95/46/EC and the laws implementing it in
the Nordic countries, with a view to its significance for directory services.

Where each entity is located and counducts it’s business in just one country, one
can use national law, and any questions will be decided by the states national
regulatory authority. In more complex cases, such as the NEEDS project, it is
important to analyze the consequences of the mixing of different laws, as will
happen if an operator operates in another country.

A lot of the terms in both the Directive and in the different national laws are as
of now unclear. A thing to be aware of is that the final say in interpretation is
not the different supreme courts in the Nordic countries, but the EU-court. One
may see different interpretations of terms in different countries the first years
until things are clarified by the EU-court.

The basis of the discussions in this paper will be the Directive 95/46/EC. Since
this in many ways is the framework of the different national legislations, and since
they do not vary that much from it, the rules are presented in the form they have
in the directive, and then national deviations from this are commented.

The different national legislations are viewed in light of their laws. Regulations,
preliminary legislative texts and directions have so far only superficially been
examined.”

Drafts of agreements between end organizations and Nathional Research Net-
work (NRN), and between NRNs, that participate in exchanging TIOs are also
included. In Appendix E a refined version af a draft “agreement concerning ac-
cess to and usage of personal data” between an end organization and a NRN is
included.

9 Future use

Another kind of future use (in addition to the common “white pages”) of a service
like NEEDS and software like lims could be to let automated systems search for
information used when authorizing and authenticating users. One example of this

15

is web authentication, using the Apache 5 web server and a LDAP authentication
module. When doing authentication the module will use some kind of username
and password, submitted by the user, and then:

1. Search the central index server for the submitted username.

2. Use the referral it gets back from the index server to do a bind to authen-
ticate, using the password submitted by the user.

Using LDAP and structuring your data according to schemas, you have laid the
groundwork for such services.

5http://www.apache.org/

16

References

[1] Stig Ven̊as. Nordic enhanced educational directory service.
http://www.katalog.uninett.no/needs/full_application-2001-02-22.html.
Full application.

[2] R. Hedberg, B. Greenblatt, R. Moats, and M. Wahl. A
tagged index object for use in the common indexing protocol.
ftp://ftp.nordu.net/rfc/rfc2654.txt. RFC2654.

[3] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol (v3).
ftp://ftp.nordu.net/rfc/rfc2251.txt. RFC2251.

[4] Timothy A. Howes, Mark C. Smith, and Gordon S. Good. Understanding
and deploying LDAP directory services. Macmillan Network Architecture
and Development, 1999.

[5] Michael R. Gettes. A recipe for configuring and operating ldap directories.
http://www.georgetown.edu/giia/internet2/ldap-recipe/.

[6] A. Gulbrandsen, P. Vixie, and L. Esibov. A dns rr for specifying the location
of services (dns srv). ftp://ftp.nordu.net/rfc/rfc2782.txt. RFC2782.

[7] G. Good. The ldap data interchange format (ldif) - technical specification.
ftp://ftp.nordu.net/rfc/rfc2849.txt. RFC2849.

[8] Walter M. Tveter. Privacy aspects of the needs project.
http://www.katalog.uninett.no/needs/NEEDS_privacy.pdf.

17

A LDIF to TIO example

A short, simple example of a LDIF file and a corresponding TIO.

A.1 UNINETT.ldif

dn: cn=Anders Lund, o=UNINETT, dc=uninett, dc=no

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Anders Lund

cn: Anders

sn: Lund

givenName: Anders

o: UNINETT

ou: UNINETT Sekretariat

dn:: Y249U3RpZyBWZW7DpXMsIG89VU5JTkVUVCwgZGM9dW5pbmV0dCwgZGM9bm8=

cn:: U3RpZyBWZW7DpXM=

cn: Stig

sn:: VmVuw6Vz

givenName: Stig

o: UNINETT

ou: UNINETT Sekretariat

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: geoPosObject

18

A.2 UNINETT.tio

Content-Type: application/index.obj.tagged;dsi=1.3.6.1.4.1.2428.50.1;

base-uri="ldap://ldap.uninett.no/o=UNINETT,dc=uninett,dc=no"

version: x-tagged-index-1

updatetype: total

thisupdate: 1022239986

BEGIN IO-schema

cn: DNS

sn: FULL

ou: DNS

o: DNS

givenName: DNS

objectClass: FULL

END IO-schema

BEGIN Index-Info

cn: 0/ven%c3%a5s

-0/stig

-1/lund

-1/anders

sn: 0/ven%c3%a5s

-1/lund

ou: 0-1/uninett

-0-1/sekretariat

o: 0-1/uninett

givenName: 0/stig

-1/anders

objectClass: 0-1/top

-0-1/person

-0-1/organizationalperson

-0-1/inetorgperson

-0/geoposobject

END Index-Info

19

B TIOnet requirements

Requirements for the NEEDS TIO distribution mechanism

1. Background

The common indexing protocol [RFC2651], [RFC2652], [RFC2653] and

[RFC2654] specifies both a data format (TIO) and transport protocols

for index information for (among other protocols) LDAP. The NEEDS

project uses TIO objects described in [RFC2654] and the LIMS ldap

index server to provide a distributed index of ldap servers. Similar

project for instance FEIDE and TF-LSD have similar objectives.

Using the protocols for CIP transport described in [RFC2653] is one

alternative solution to the problem of distributing the TIO

objects. There are other possible solutions to this problem and this

document describes the requirements of the NEEDS project on the TIO

distribution mechanism.

2. Requirements

2.1 Updates and TIO identification

2.1.1 Full vs partial updates

NEEDS does not require partial updates of TIO objects. That is to say

all TIO objects distributed to index servers are expected to be full

updates. In order to uniquely identify TIOs for the purpouse of

replacing one TIO with another regardless of the LDAP url where

referrals are sent, each TIO must have a unique and fixed

DSI. Further- more an empty TIO must be equivalent to deleting the

corresponding TIO.

2.1.2 TIO Expiration

Index objects in the index servers must be kept in close

synchronization with the original data. To achieve that the TIOs

distribution mechanism must be able to inform index servers about

20

expiration time associated with the data in a given TIO object. This

expiration time must be used by the index server to remove TIOs which

have not been updated in time. I.e in the NEEDS project, absent data

is better than erroneous data.

2.1.3 Loop detection

Since the structure of the set of index servers and index object

providers may not be tree-like the TIO delivery mechanism must be

able to detect loops.

2.1.4 Scoping

The infrastructure for TIO distribution may be shared among several

partially over- lapping index infrastructures. For instance some of

the index data found in the NEEDS index servers may be included in a

European network. To facilitate this it should be possible to include

information about scope (for instance "world", "local", "eu",

"nordic") in the TIO distribution mechanism.

2.2 Security

All TIO objects must be transported over a channel which provides

integrity and privacy. Scoping raises some security issues, however

it is believed that leaving scoping up to the receiving party may be

sufficient initially. However the TIO distribution mechanism should be

able to support some form of secure scoping.

21

C tags manpage

TAGS(1) TAGS(1)

NAME

tags - Creates Tagged Index Object files from LDIF files.

SYNOPSIS

tags [-t type] [-d debuglevel] [-c configfile] [-s char

type] [-D DSI] [-R Refs] [-v] < inputfile > outputfile

DESCRIPTION

Tags is a program that takes as input a LDAP Data Inter

change Format (LDIF) file as specified in RFC 2849 and

produces as output a Tagged Index Object File as defined

in RFC 2654. It’s made to work together with lims(1) by

the same author.

OPTIONS

The following options are recognized:

-d debuglevel

Turn on debugging as defined by debuglevel.

Presently does not really distinguish between dif

ferent level but might do so sometime soon.

-c configfile

Tells tags where the configuration file can be

found. The format of the configuration file is

described in lims.conf(5). If no file is specified

tags expects to find the configuration file at

/etc/lims/lims.conf.

-s chartype

tags accepts two different character sets in the

input LDIF file, it can either be UTF-8 or

ISO-8859-1. If UTF-8 is used (this is the default

) then according to RFC any attribute values that

contains non-ASCII characters MUST be base64

22

encoded. If on the other hand ISO-8859-1 is speci

fied then this limitation is not necessary. This

option is a historical artifact and may go away in

the future.

-D DSI This is where you define the Data Set Identifier

(DSI) which should be worldwide unique for the

dataset you are indexing. Normally a DSI is a

ObjectIdentifier.

-R Refs

Apart from the DSI you also have to specify where

one can find a network accessible ’database’ which

contains the original information from which the

LDIF information was constructed. Normally these

refs are LDAPURLs (RFC 2255), but there is noth

ing stopping you from defining some other type of

URL. If you want to specify more than one URL you

can do that, the different URL then has to be sepa

rated by a space character. Because of this if a

URL contains a space character it has to be

escaped, tags expects this to be done the HTML way,

that is ’%20’ instead of <space>.

-v Print the version of the program. The program will

close down after doing this.

EXAMPLE

Typically you will use tags in this way:

tags -c lims.conf -D 1.2.752.58.46.1 \

-R "ldap://ldap.catalogix.se/dc=catalogix,dc=se" \

< catalogix.ldif > catalogix.tio

Or if have more than one ldapserver that handles the same

dataset.

tags -c lims.conf -D 1.2.752.58.46 \

-R "ldap://ldap.catalogix.se/dc=se ldap://ldap.sunet.se/dc=se" \

< se.ldif > se.tio

SEE ALSO

lims(1), lims.conf(5)

23

AUTHOR

Roland Hedberg, roland@catalogix.se

Catalogix 25 April 2002 1

24

D lims manpages

D.1 lims

LIMS(1) LIMS(1)

NAME

lims - Stand-alone Index based LDAP Daemon

SYNOPSIS

lims [-d debuglevel] [-c configfile] inputfiles

DESCRIPTION

Lims is a program that takes as input Tagged Index Object

(TIO) files as defined in RFC 2654. It will listen for

LDAP connections on a specified port (default 389),

responding to the LDAP operations it receives over these

connections. Lims differs from other LDAP servers in that

it is a read-only server and that it only returns refer

rals.

Upon startup, it normally forks and disassociates itself

from the nvoking tty. If the -d flag is given, lims will

not disassociate from the invoking tty.

The TIO files needed as input can be produced by tags(1)

by the same author.

OPTIONS

The following options are recognized:

-d debuglevel

Turn on debugging as defined by debuglevel. If

this option is specified, lims will not fork or

disassociate from the invoking terminal. Some gen

eral operation and status messages are printed for

any value of debuglevel. Debuglevel is taken as a

bit string, with each bit corresponding to a dif

ferent kind of debugging operation.

25

-c configfile

Tells lims where the configuration file can be

found. The format of the configuration file is

described in lims.conf(5). Default is

/etc/lims/lims.conf.

EXAMPLE

Typically you will use lims in this way:

lims *.tio

To start with a alternate configuration file, and turn on

copius debugging which will be printed to standard error,

type:

lims -c lims.conf -d 255 *.tio

SEE ALSO

tags(1), lims.conf(5)

AUTHOR

Roland Hedberg, roland@catalogix.se

Catalogix 25 April 2002 1

26

D.2 lims.conf

lims.conf(5) lims.conf(5)

NAME

lims.conf - configuration file for the tio producer

tags(1) and the stand-alone LDAP daemon lims(1).

SYNOPSIS

/etc/lims/lims.conf

DESCRIPTION

This configuration file contains configuration information

for both the lims(1) daemon and the tio producer tags(1).

The lims.conf file contains a series of sections. Each

section with a tag and then a number of lines with infor

mation pertaining to that section.

Blank lines and comment lines beginning with a # charcter

are ignored.

The specific configuration options available are discussed

below.

TOKENTYPE

For a full background on tokenization you should read

RFC2654. So I am not going to go through it all in detail

here. Basically it’s all about splitting strings into sub

strings(tokens). Where this splitting occurs depends on

which characters one uses as tokenization characters. If a

email address is to be split into it’s components one

might use ’@’ as the tokenization character. A finer

grained tokenization will require ’.’ to also be used.

Hence with the use of ’@’ and ’.’ as tokenization charac

ters the email address "roland@catalogix.se" would be

split into the following three tokens "roland", "cata

logix" and "se".

Different data requires different tokenization, even if

they are of the same type there might be reasons for doing

27

it differently. So in this section the different tokeniza

tion types (the sets of tokenization characters) are

defined.

The format of the definition is :

<name> <char1> <char2> <charN>

Is char is not a printable ascii character, that is out

side the range 0x20 - 0xff it has to be presented as 0xNN

where NN is the hexcode of the character. char also has

to be in the UTF-8 set of characters. If the character is

a multibyte UTF-8 character is must be specified as

0xNNNN, 0xNNNNNN or 0xNNNNNNNN depending on whether it is

a 2,3 or 4-bytes character.

Multicharacter tokenizations ’characters’ can also be

specified. They must be specified in the same way as

multibyte UTF-8 characters that is by specifying them as

0xNNMMOOPP...

SCOPE

In the case where there are indexing domains served by

sets of lims servers that overlap, there might be reasons

for not allowing the propagation/usage of index

information that has been received from LDAP servers

within one domain, in another domain. The use of scope is

a simple way of telling the lims server which index object

it should use.

CONTEXT

It’s not yet very common that LDAP clients ask the LDAP

server which naming contexts it serves. But if it does the

contexts defined in this section is what the lims server

returns as it’s naming contexts. You can specify as many

as you like.

TIMEOUT

How long the lims server should wait before it will close

the connection to a inactive client. This is to disallow

clients hanging about, just in case they get the need to

ask a query.

PORT

28

Normally LDAP servers listens on port 389, there might be

very good reasons for having the lims daemon listing on

another port.

UNICODE FILE

When dealing with matching on unicode strings, the soft

ware has to normalize the unicode strings before any com

parision can be attempted, This file contains information

that is necessary for the functionality.

ATTRIBUTE

A list of attribute definitions, each one ont the format:

<name> <tokenizationtype> <attributesyntax> <oid> <maxsize>

Name must be a LDAP attribute name

tokenizationtype must be one of the tokenizationstypes

defined earlier in the file

attributesytax has to be one of directorystring or IA5

these two corresponds to "Directory String" and "IA5

String" as defined in the ITU-T standards.

oid is the object identifier of the LDAP attribute.

maxsize is the maximum size of a attribute value of the

attribute. This is really the maximum.

LOG

Where tags should write the logs. If nothing is specified

tags will attempt to write to /var/log/lims.log.

SEARCHBASECHECK

Has to possible values: strict or lax. If strict is

defined (this is the default) then the searchbase will

be check against the distingusihed name defined in the

referral URL and if it is not less specific that referral

will not be returned.

If a search has the searchbase dc=SE and the referral URL

has the searchbase c=NO it will not be returned. On the

other hand if it is dc=catalogix,dc=SE it will be

29

returned.

If the check is defined to be lax then no such check is

performed. The obvious benefit of this is of course that

in some instances you would like a set of LDAP servers to

appear outward as if the represent one community even if

they by administrative of technical reasons all are using

naming contexts that are in totally other parts of the

tree.

SSMIN

The minimum number of characters that are allowed in a

substring search filter (default is 2). Substring searches

are costly and in some cases completely unnecessary. If

you don’t want to allow substring searches at all define

this to be ’0’.

MAXREFERRALS

The maximum number of referrals that is returned. It is

worth noticing that the client has no way to specify how

many referrals he is prepared to handle. The size limita

tions he can specify all has to do with attributes not

referrals. The is no default.

EXAMPLE

[tokentype]

TOKEN @ 0x09 0x0A 0x20

RFC822 @ . 0x09 0x0A

UUCP ! 0x09 0x0A 0x20

DNS ! # $ % & ? () + , . / : ; < = > ? @ [] ^ _ ‘ { | } ~ 0x20 0x5c 0x

22 0x09 0x0D 0x0A

FULL

[scope]

nordunet

[context]

c=fi

dc=se

dc=no

[timeout]

30

30

[port]

1389

[unicodefile]

/usr/local/etc/UnicodeData.txt

[attribute]

cn DNS DirectoryString 2.5.4.3 32768

sn FULL DirectoryString 2.5.4.4 32768

c DNS DirectoryString 2.5.4.6 32768

l DNS DirectoryString 2.5.4.7 32768

ou DNS DirectoryString 2.5.4.11 32768

o DNS DirectoryString 2.5.4.20 32768

gn DNS DirectoryString 2.5.4.42 32768

mail RFC822 IA5 0.9.2342.19200300.100.1.3 256

dc DNS IA5 0.9.2342.19200300.100.1.25 32768

objectClass FULL OID 2.5.4.0 0

[log]

lims.log

[searchbasecheck]

strict

[ssmin]

2

[maxreferrals]

25

SEE ALSO

lims(1), tags(1)

AUTHOR

Roland Hedberg, roland@catalogix.se

Catalogix 24 April 2002 1

31

E Draft agreement

Agreement concerning the access to and usage of personal data about

employees and students of

..

for specific use in the electronic directory services of the

Nordic Enhanced Educational Directory Service (NEEDS) project.

This agreement exists between

.. (ORG)

and

.. (NRN)

1.0 Scope

1.1 This agreement regulates the access to and usage of information

about employees and students of ORG for the above mentioned electronic

directory service, between the above parts.

1.2 This agreement covers all usage of such information, at all times.

1.3 This agreement exists between ORG as a controller and NRN as a

processor in the sense these terms are given in the "Directive

95/46/EC of the European Parliament and of the Council of 24 October

1995 on the protection of individuals with regard to the processing of

personal data and on the free movement of such data", with the

understanding of both parties that ORG as the controller bears the

responsibility for securing the necessary grounds for the processing

of personal information as described in this agreement.

2.0 Duties of ORG

2.1 ORG shall provide NRN access to the data through a channel which

provides integrity and privacy. ORG shall ensure that the data

supplied is as correct as is possible, using reasonable resources.

2.2 All information to be used by NRN shall be provided by ORG in

32

accordance with the provisions in Appendix A, and in close

colaboration with the NRN.

3.0 Duties of NRN

3.1 NRN collects data from ORG through a channel which provides

integrity and privacy. The information shall be collected, and the

NRN’s data updated in accordance with the provisions in Appendix A.

3.2 NRN shall provide the directory service to end users without

prejudice, without charge and at all times of day.

3.3 NRN shall send a report log to ORG stating when its index server

has collected and updated its information concerning ORG every three

months.

4.0 Liability and damages

4.1 Any liability for providing access to information shall be

minimized by the clear informing of any and all end users, that

neither NRN nor ORG will guarantee, or be held responsible for the

accuracy or correctness of the data.

4.2 Any and all liability for the providing of incorrect information

where this information is available updated and corrected from ORG,

will be on the part of NRN.

5.0 Forwarding data

5.1 NRN can forward, exchange or mirror information from ORG only to

national research networks that shall use the information solely for

purposes relating to the NEEDS project.

5.2 To perform such an action, NRN shall provide that it through

contractual means has acquired the right to retract allready given

information, should the grounds for giving it (powers derived from

ORG) vanish.

5.3 Whenever NRN wishes to forward, exchange or mirror its

information, notice shall be given to ORG at least 14 days in

advance.

5.4 Given such notice as described in 5.2, ORG can, for any reason,

deny NRN the ability to do this.

5.5 If NRN has forwarded, exchanged or mirrored information, ORG can

33

at any time, for any given reason, demand this to be stopped, and for

NRN to retract any given information.

6.0 Security issues

6.1 All handling, publishing and processing of information must be

done in accordance with the provisions in Appendix A.

7.0 Alterations of the agreement

7.1 Alterations in this agreement shall be made with regard to, and if

possible in accordance with, other agreements between NRN and other

controllers concerning the NEEDS project.

8.0 The duration of the agreement, termination of the agreement

8.1 This agreement can at any time be terminated by any of the two

parties, with three months written notice.

Date/Signature Date/Signature

(on behalf of ORG) (on behalf of NRN)

(Appendix A)

Handling, publishing and processing of information in the

Nordic Enhanced Educational Directory Service (NEEDS)

project

The "Nordic Enhanced Educational Directory Service" (NEEDS) consists

of two main parts of operation:

1. Distribution of tagged index objects (TIOs) to be used in central

index server

2. Running an updated central index server

There should also be a search interface for end users, but part 2

includes support for LDAP. This means that you could use different

LDAPv3 clients for searching, and in this way publish

information. NEEDS will also deliver a web interface which could be

used.

34

The index server includes referrals to LDAP servers which should be

version 3 compliant.

1. Distribution of TIOs

Key words for this part of the NEEDS service:

* All TIO objects must be transported over a channel which provides

integrity and privacy.

* All TIO objects distributed to index servers are expected to be full

updates.

* Distributing an empty TIO must be equivalent to deleting the

corresponding TIO.

* The distribution mechanism must be able to inform index servers

about expiration time associated with the data in a given TIO

object.

2. Running the index server

The index server contains tagged index objects. In the NEEDS project

it has been decided that these attributes should be indexed and made

searchable:

* cn

* sn

* givenName

* o

* ou

* objectClass (the primary ones, "person", "role", etc.)

Key words for this part of the NEEDS service:

* Information contained in the index servers is refreshed in

accordance with the update frequencies of the original directory

server, and should be refreshed in a timely manner, so that the data

is not outdated.

* NEEDS does not require partial updates, i.e. all information should

be refreshed.

35

